ISSUE #1 AUGUST 2025

The Power of Two Choices |

How do you write SIMD?

Everyone Hates SQL Types

IN THIS ISSUE

SIMD ATOI ..o ALEX MILLER

POWER OF
TWO CHOICES............ FORTE SHINKO

TYPE SYSTEMS IN

RELATIONAL
MODELS............ ARTHUR POINTSMAN

THINKING IN
OPLOGS ..EVAN VIGIL-MCCLANAHAN

GETTING REAL
WITH SQLITE ... MAX FORBES

PHOTOGRAPHS BY CRISTIAN STAFIE

NULL BITMAP © JUSTIN JAFFRAY
NEWSLETTER.NULLBITMAP.COM

No syscalls?

———————)

R

No problem.

i
i
i
i
i
i
i
1
\ 4

10_uring.

available in linux kernel versions 5.1 and higher. some syscalls are required in order to set up the ring buffer but afterwards io can proceed
syscall-free. any security vulnerabilities are figments of your imagination and any benchmarks in which this loses to vendor-provided specific
apis are null and void by virtue of cross-device limitations and standards. this advertisement not endorsed by jens axboe or facebook or the linux
kernel or anyone else who could reasonably have an ownership claim over io_ uring. please don’t sue me

The perils of moral relativity: Type

systems in relational models

Editor’s note: As ardent defenders of free speech, we publish
letters we receive as we receive them.

This is grand but true: type
systems provide structure so
that we may codify and share
interpretations of the world.
They provide the praxis of
interpretation, through which
we may reticulate the current
state of the world, program by
program, version by version.

The challenge then is how you
move between types, i.e.
interoperatability. The question
of how to share meaning. In
short, we simply must impose
an order on the relationships of
these types. Bigger types are
the natural successors to
smaller types; their expressive
domain forms a superset.
Ordering types by domain
forms a hierarchy that is simple
to understand, intuitive, and
creates frictionless
communication within and
between systems.

Polytrees are our best hope in the
chaos of the world.

Woe betide, though, those who
dabble in the profanity of cliques,
for once entered, extrication is
possible only through great
conviction, forceful coercion, and
extraordinary foresight. Such is
the case with PostgreSQL’s String
type category.

Imagine, for instance, you are a
busy computer science professor,
and have outsourced some
menial tasks to a young woman
on campus, such as doing data
entry for your last semester’s

students’ reviews. Rather than
using the existing
student_reviews table in your

database, she creates an entirely
new table
student_review_spring_summer
with, of course, its own distinct
schema.

| will spare you the gory details of
these fateful decisions, but for
simplicity’s sake, | will say that
she decides to model the ‘review’
column, where students select a
value of either Poor, Average,
Good orExcellent ggTEXT |
having suffered the vagaries of
the IT department’s
“optimizations” for many years
had chosen CHAR(9) —-this has
the benefit of giving you string
trimming during equality for free,
which meant that | needed to do
less cleaning of the sloppily
maintained data.

Hers:

tenure packet the day before its
due date. Surely, with your
sympathy, you can empathize
with using PostgreSQLs type
coercion system to help smooth
out the wrinkles of this mess.

| also imagine you, like me, will be
shocked by the bald-faced lie
that PostgreSQL tells in its
statement that TEXT s the
String type category’s preferred
type--i.e. if the hierarchy of
types is respected, any type in
that category will be forcefully
coerced into the superior type if
that type is present. When | need

CREATE TABLE student_review_spring_summer

(.., review TEXT)

Mine:

CREATE TABLE student_reviews
(.., review CHAR(9) NOT NULL)

Now, as you all are database
professionals yourself, you know
that life’s tasks distract you and
sometimes you have to make
things work in a pinch. Imagine,
as well, that you don’t realize
what a wreck you’ve waded into
until you begin preparing your

to reconcile TEXT and CHAR
columns, they will uniformly
coerce to TEXT . With that
assumption, | proudly submitted
this query to the tenure
committee demonstrating my
student reviews (query simplified
for legibility):

WITH all_reviews AS (

SELECT review FROM student_reviews

UNION ALL

SELECT review FROM student_reviews_spring_summer

)
SELECT

COUNT(*) AS total_reviews,

ROUND(COUNT(*) FILTER (WHERE review_text NOT IN ('Poor',
"Needs Improvement')) * 100.0 / COUNT(%), 1) as

positive_review_percentage
FROM all_reviews;

Of note, we must submit the
underlying data alongside our

queries, so that the tenure
committee can “check our
maths.” So, friend, you can

certainly understand my surprise
when | received a letter which
not only notified me that tenure
was being withheld, but also
suggested that | take a leave of
absence. How could this have
occurred?

After puzzling and poring over
the PostgreSQL source code

WITH all_reviews AS (

| have found that the term
“algebra” in “relational algebra” is
meaningless to Michael
Stonebraker and Tom Lane! Two
so-called “luminaries” in both
relational databases and open
source are charlatans, concerned
with appeasing mewling JavaScript
developers, rather than adhering
to the mathematical principles
software must be built on.
What motivates this invective?
Here:

SELECT review FROM student_reviews_spring_summer

UNION ALL

SELECT review FROM student_reviews
)
SELECT

COUNT(*) AS total_reviews,

ROUND(COUNT(*) FILTER (WHERE review_text NOT IN ('Poor',
'Needs Improvement')) % 100.0 / COUNT(%*), 1) as

positive_review_percentage
FROM all_reviews;

total_reviews | positive_review_percentage

Both eagle- and bleary-eyed
readers will notice that | have
simply re-ordered the relations in
the UNION , which causes
PostgreSQL to generate results of

totally different types in the
intermediate relations! In my
original query, the UNION

generated a type of TEXT simply

because it came first. In this
second, damnable query, the
CHAR type comes first,

generating a totally different set
of equality semantics. This is not

total_reviews | positive_review_percentage

69.1

commutative. It is not
deterministic. It is the caprice of
the weak-minded. And worse yet—-
TEXT, CHAR, and VARCHAR
don’t form some sort of rational
hierarchy; they form a clique, able
to be transmuted into one another
willy-nilly! You can demonstrate
this for yourself with the profane
incantations below:

SELECT pg_typeof(
COALESCE(“abc’ : : TEXT,
‘abc’ ::CHAR));
SELECT pg_typeof(
COALESCE(“abc’ : :CHAR,

‘abc’ : :TEXT));
What benefit to us is
commutativity (a core tenant of an

algebra) if it isn't applied? |Is
mathematics simply optional to
these people? They've boxed
themselves into a corner where
there are no good decisions to be
made because they have treated
all things as equals.

So--what compels me to pen this?
Sympathy? Job offers? No—-I need
neither. After this dismal foray into
academia, | plan to join my uncle’s
high-frequency trading firm--a
task with tangible rewards, unlike
the carrot dangled in front of
educators to “help to shape future
generations.”

| see a worrying parallel between
this kind of permissive attitude
toward type coercion (which, you
recall, violates a natural ordering
of the relationships between
data) and the permissive attitude
| see emerging culture around us.
| hope that the readers of this
fine publication will clearly see
the perils of this kind of
“anything can be anything”
thinking. For the world we’ve
built to continue to work as it
has, we need the kind of clear,
well delineated order that
polytrees provide--cliques be
damned.

Arthur Pointsman

THE POWER OF

TWO CHOICES

FORTE SHINKO

If you love computers as much
as | do, then you probably love
hashing equally so. Imagine that
you have a hash function X » {0,
1,2,...,N-1} and suppose you
hash N random elements of X.
The best possible thing that
could happen is that the N
elements are sent to distinct
values, but this simply won’t
happen if X was much larger
than N. However, a more
reasonable expectation is that
there won’t be too many such
hash collisions, since for
instance, it would also be very
unlikely for half the elements to
map to the same value.

To get a better sense of how
many collisions there are, we’ll
work in a specific probabilistic
model, namely the balls-and-
bins model. In this model, there
are N balls and N bins, and we
throw each of the N balls
uniformly at random into one of
the N bins. At the end, each of
the bins has a “load”, which is
the number of balls in it, and a
reasonable measurement for

the number of collisions is the
“max load”, which is the
maximum load among all the
bins. It turns out that for N balls
and N bins, the expected max
load is O(logN) (this isn’t sharp).
To get an idea of where log N
comes from, note that the load
of any given bin follows a
binomial distribution
approximating a Poisson
process with rate 1. Since the
Poisson distribution decays (at
least) exponentially, a given bin
will have probability at most 1/N
of having load log N. Since there
are N bins, in expectation there
is at most one bin with load log
N, indicating that the max load
should also be around there.

The actual expected max load is
O(logN/loglogN), which is
basically still log N . To do

better, we can employ the
Power of Two Choices,
introduced in the paper

“Balanced Allocations” by Azar-
Broder-Karlin-Upfal.

In our balls-and-bins model, the
Power of Two Choices looks like
the following: there are N balls
and N bins, and for each ball, we
choose TWO bins uniformly at
random, and put the ball in the
bin with the smaller load.
Although it doesn’t look like
we’ve changed much, it turns
out that this has a tremendous
effect on the expected max
load, dropping it all the way
down to O(loglogN).

To see why, first note that at
most half the bins can have > 2
balls, since there are only N
balls total. In particular, this
means that the expected
fraction of bins with > 2 balls is
at most 1/2. Now how about > 3
balls? Well on a given ball’s turn,
how likely is it that it will
increase the number of bins
with > 3 balls? For this to
happen, the two bins it is
presented with have to have 2
balls each. Since each individual
bin has probability at most 1/2
of this happening, this means
that the probability of
increasing the number of bins
with > 3 balls is at most (1/2)% =
1/4. Summing this up over all
the balls, we see that the
expected fraction of bins with >
3 balls is at most 1/4.

If we repeat this for the
expected fraction of bins with >
4 balls, we again see that the
only way for a ball to make a
new bin with > 4 balls is to be
presented with two bins of 3
balls each, which has
probability (1/4)> = 1/16 of
happening, showing that the
expected fraction of bins with

> 4 balls is at most 1/16. In
general, we see that the
expected fraction of bins with >
k balls is at most 1/2*(2k) . So the
expected fraction of bins with >
log log N balls is at most 1/N ,
which is at most one bin in
expectation, so we should
expect the max load to be
around log log N.

Kobe!l

2D

https://symbl.cc/en/00B2/
https://symbl.cc/en/00B2/

THINKING IN

OPLOGS

Jay Kreps called the log "real

time data's unifying
abstraction", and often you'll
hear this statement extended to
all distributed systems; they're
all just a materialized view of a
log of logical operations. It is
mundane (even foundational!)
to note it, but this notion can be
extended to all programs of any
complexity. But Turing's
machines seem abstract, and
might swim hazily in the
memory with the other
complexities of algorithms
class, so let's restate it. A
program takes a stream of
inputs, and is fundamentally a
state machine that turns those
inputs into memory changes, |10
operations, and etc. It's
possible, if perhaps onerous, to
pair each operation with the
delta it causes within the
system. One can use this for
undo, or for time travel
debugging.

| can hear you asking, "Why spell
something so obvious out like
this?"

Evan
Vigil-McClanahan

It's worthwhile, because going
through the effort involved in
rethinking your system in these
particular abstract terms comes

with the strongest return
available to you in
programming. It helps with

writing systems that are correct
and in learning how to make

more certain that they're
correct. The oplog is a
macroscope (an

abstractoscope?), allowing you
to zoom out from the details of
how a particular operation is
executed, and to start thinking
about the interrelationship of
those operations, their
dependencies and costs. This
view opens up new perspectives
on APl design. Do two endpoints
logically belong to the same
operation? Then they should
probably be a single call. Two
logical operations fused into a
single call? Now you know why
there are fifteen arguments.

It also opens up new frontiers in
testing. Critically,

interoperational dependencies
are properties! Which means
that stateful property based
testing is now there, waiting for
you to write a stateful test to
permute its way to operational
interleavings you could never
have imagined, but your users
will almost certainly try.

No system of thought is perfect.
Log-systems do not always
cleanly decompose into
tractable sub-log-systems
(although when they do, you've
discovered a clean testing
boundary). Invisible state
dependencies can be teased
out via careful thought,
experimentation, and testing,
but if left unknown can cause a
great deal of misery and late-
night debugging. And because
the world is the world and
computers are actual machines,
nondeterminisic behavior in
systems is impossible to fully
stamp out. Regardless, this way
of thinking about your programs
and systems of programs is
fruitful and important, and will
lead to you growing as a writer
of programs and a designer of
systems and subsystems. You
might even learn what
transactions are for along the
way!

'With titanic effort, one can
even linearize and determinize
the entire operating system and
multithreaded programs to
produce testing systems like
Antithesis.

SIMD ATOI

ALEX MILLER

I’'ve been learning about how to
write SIMD code recently, and
I've come to appreciate that
there’s two distinct skills
involved: knowing how to
transform a given loop into one
that has sufficient parallelism to
apply SIMD, and knowing how to
fit a parallel loop’s computation
into the restricted set of
available SIMD instructions.
We’'ll be looking at only the first
part of that today: learning the
pattern of how to transform one

loop type into its parallel
version.
Simple examples of SIMD

optimizations tend to show off
the speedups on problems that
are already embarrassingly
parallel. map is an easy function
to parallelize: there’s no
dependencies between loop
iterations, so each element can
be handled in parallel trivially.
reduce with a commutative
operation is similarly simple:
repeatedly apply the operation
over pairs of elements in

parallel until there’s only one
value left. Many problems fit
the shape of a map() and a
reduce(). Suppose we want to
compute the numerical sum of
an array of ASCIl digits: this

involves a map() to convert
each to its integer
representation, and then a

reduce() to sum them together.
And we can neatly fuse those in
one loop:

scalar

int sum_ascii_digits(
charx digits,
size_t length)

int sum = Q;
for (int i = Q;
i < length;
i++) {
sum += digits[i] - 'Q"';
}

return sum;

SIMD

int sum_ascii_digits(
charx digits,
size_t length)

{
// Process 4 digits at a
// a time across 4 lanes.

int suml = @, sum2 = 0,
sum3 = @, sum4 = O;

int i = 9;

for (; i+3 < length; i+=4)

{
suml = digits[i] - '0Q';
sum2 = digits[i+1] - 'Q';
sum3 = digits[i+2] - 'Q';
sum4 = digits[i+3] - 'Q';

}

for (; i < length; i++) {

suml += digits[i] - 'Q';
}
// Sum the lanes by adding
// pairs in parallel.
suml += sum3; sum2 += sum4;
suml += sum2;
return sumi;

}

Such transformations make a lot
of sense in my head, because
it’s transforming an iteration
over an array from one element
at a time to many elements at a
time, but the overall linear
structure of the algorithm stays
almost exactly the same. Any

loop that’s just a map() and
reduce() of a commutative
operation can be transformed in
this fashion.

There’s other patterns for SIMD
solutions which I find
fascinating because they
require contorting the scalar
solution of a linear scan into a
completely different shape of
an algorithm. We’re going to be
looking at the slightly more
difficult problem of parsing
integers instead. Given a string
of 8 digits, | want to know what
unsigned 64-bit int they
represent. The scalar solution to
this is a pretty simple linear
scan:

uint64_t parse_int(

charx digits) {

uint64_t parsed = 0;

for (int i = Q;
i< 8;
i++) {

parsed = parsed x 10 +
digits[i] - 'Q';
}

return parsed;

However, there’s not a lot of
opportunity for parallelism in
this. Each iteration depends on
applying an operation (multiply
by 10) to the output of the
previous iteration. If we fully
multiply out

(((d[@] * 10 + d[1])x10
d[2]) * 10 + d[3]) *x 10 +
.+ d[7]

+

We’re left with

d[@] * 1077 + d[1] * 1076
d[2] * 1075 + + d[T7]
1070

+

And we can write an algorithm
that follows that style of
computation instead, by
building up the power of 10:

uint64_t parse_int2(
charx digits) {
uint64_t parsed = 9;

='_|_'

I

uint64_t power_of_ten
for (int i = 7;
i>0; i--) {
parsed += (digits[i] -
'Q@') % power_of_ten;
power_of_ten %= 10;

}

return parsed;

However, this still leaves us
computing O(digits) numbers of
powers of 10, and each iteration
still depends on the result of
the previous iteration. But can
go another step further.
Extracting out a common factor
of 10”4 from the first half of the
elements, and then we’re left
with two very similar
computations to perform, with
one final multiply-and-add:

(d[@] * 1073 + d[1] * 1072 +

+ d[3] % 1070) x 10”4 +
(d[4] * 10~(3) + d[5] #* 1072
+ ... + d[n] * 1070)

This looks like a nice
optimization, as it means we
never need to compute a power
of 10 higher than half the
number of elements. But we can
also apply the same extraction
of common factors again and
again:

((d[@] * 1M + d[1]) * 1072
+ (d[2] = 1oM + d[83]))
* 107N4 +

((d[4] * 10M + d[5]) % 1072
+

(da[6] * 100 + d4[7]))

Which leaves us with a nice
tree-shaped computation where
we can perform all the multiply-
and-adds that require 1071,
then compute 10”2 and perform
all the multiply-and-adds which
require that value, then
compute 10" and .. ad.
nauseum. We only ever need to
compute squares of 10!

Level O: ['1'1 '2', '3', '4', '5', '6', 'T', '8']

Level 1: 12 34 56 78
| 1072+ | | %1072+ |
= S T
Level 2: 1234 5678
| %1074 + |
L]
T
Level 3: 12345678

This idea can be translated back
into C:

uint64_t parse_int_tree(char* digits) {

// For the sake of clarity, first

// transform the digits into an

// array of the integral values.

uint64_t parsed[8] = {0};

for (int i = 09; i < 8; i++) {
parsed[i] = digits[i] - 'Q';

}

// Now follow the tree-shaped computation.

// We multiply-and-add pairs of elements,

// assigning the result back to the left-hand

// side.
uint64_t power_of_ten = 10;
for (int level = 0; level < 3; level++) {
for (int i = 0;
i <8;i=14+ 2 << level) {

parsed[i] = parsed[i] * power_of_ten

+ parsed[i+(1<<level)];

}

power_of_ten %= power_of_ten;

}

return parsed[0Q];

And now, we finally have a loop
where each iteration doesn’t
depend on the previously
resulting value. We’ve achieved
parallelism!

From there, we could unroll our
loops (#pragma clang loop
unroll(full)!) to get a straight line
of instructions to execute, but
gcc/clang will do that for you
already. In the true spirit of
SIMD, we can further optimize
this by packing the operations
for multiple digits into one
value. In SIMD land, you’ll
typically see this as a significant
amount of masking and shifting.
We mask to find each of the
tens digits, we shift it to line up
with the ones digits, perform
the multiply-and-add, and then
use a wider mask to do the same
for hundreds and ten
thousands. This is the SIMD-
within-a-register (SWAR)
technique:

#include <endian.h»>

uint64_t parse_int_swar(charx digits) {
uint64_t digits_bytes = *(uint64_tx)digits;
uint64_t digits_becd = digits_bytes - 0x3030303030303030UL ;
// 1f the host is little endian, then loading it as a uint64_t
// will mean the least significant byte is the most significant
// digit, and it's mentally easier to think of it the other way.
// This mental ease costs us one ‘bswap® instruction.
digits_bcd = htobe64(digits_bed);

uint64_t tens_upper_mask
uint64_t tens_lower_mask

OxFFOOFFOOFFOOFFOOUL ;
0x00F FOOFFOOFFOOFFUL ;

uint64_t level_one = ((digits_bcd & tens_upper_mask) >> 8) * 10 +
(digits_bcd & tens_lower_mask);

uint64_t hundreds_upper_mask
uint64_t hundreds_lower_mask

OxFFFFOO0OFFFFQ000UL ;
0x0000FFFFO0OOFFFFUL ;

uint64_t level_two = ((level_one & hundreds_upper_mask) >> 16) x 100 +
(level_one & hundreds_lower_mask);

uint64_t tenK_upper_mask
uint64_t tenK_lower_mask

OxFFFFFFFF00000000UL ;
0x00000000FFFFFFFFUL ;

uint64_t level_three = ((level_two & tenK_upper_mask) >> 32) x 10000 +
(level_two & tenK_lower_mask);

return level_three;

}

|n general. any fOld Comprlsed Benchmark Time CPU Iterations
)

of Commutative Operatlons can parse_inti 0.426 ns 9.425 ns 1667920355

. A . parse_int2 0.421 ns 0.420 ns 1665745819

be Computed N thIS faSh|On tO parse_int_tree 0.484 ns 0.483 ns 1483969012

parse_int_swar 0.421 ns 0.420 ns 1666246273

unlock parallelism. SIMD-ifying

code is easy when it’s already Nothing! Butit sure was fun!
embarrassingly parallel. The fun If you’re interested in more of
is in trying to find the right way this, highload.fun gives a nice

to contort seemingly

serial framework and set of challenges

algorithms into parallel ones! for trying to get practice at
So, what did our optimizations applying SIMD to real problems.

achieve?

What we’ve looked at is only a
small portion of the first "parsing
integers" challenge.

ACROSS

1
4

10
11
13
14
15
19
22
23
24
25

Hosp. scan

STDIN and STDOUT, say
(abbrev.)

Indian yogurt drink

Mine find

One eschewing internal data
Style with straight black bangs
Internal availability target
Treelike cactus

Dangerous DDL

Japanese honorific

Be

Purple yam

OCaml cousin

DOWN

©O© 00O 0L WN B

World Series org.

Knock

Archipelago part

Places for discussion
Three, to TUM folk

Oracle

Does a particular aggregation
Run at SERIALIZABLE
Chest

SoCal school

Spirited horse

Left

Kimono sashes

Structure for write-heavy
workloads (abbrev.)

Proc. to load a warehouse

GETTING REAL

WITH SQLITE MAX FORBES

Dear NULL BITMAP,

| was naive, but you can
understand why | picked it. Its
social media profile was
glowing: Litestream, D1, The
Library of Congress. Everyone
on the orange website loved it.
Couldn’t stop talking about its
exhaustive test suite.

Of course, I'm talking about
choosing server-side SQLite.

At first, the relationship went
well. Great communication:
exhaustive docs, if a bit old
school (raw HTML). But it all
nearly fell apart when | couldn’t
get a straight answer about a
double.

SQLIte’s Four Data Type
Abstractions — When making a
new column, SQLite always
walks the type through the
same four abstractions (below).
The only choice | make is to
write (1) the declared type. | can
put anything | want there, like

Declared type Type affinity Storage class
INTEGER

BIGINT match “INT”

NUMERIC or DATETIME or even
FLAMING _TROUSERS.

SQLite brings (2) its type
affinities. When | say BIGINT, it
hears INTEGER... but it also

hears INTEGER if | say CHARINT
or CHICKEN_ INTERRUPTION.
Then we have (3) the storage
classes. It only has five: NULL,
INTEGER, REAL, TEXT, BLOB.
Every declared type gets
mapped to one of these five
with the type affinity rules.
SQLite says all | should worry
about are storage classes, that |
shouldn’t think any further. But |
know about its...

(4) Datatypes. It “makes a big
difference on disk,” it says. “The
INTEGER storage class, for
example, includes 7 different
integer datatypes of different
lengths.” (I count 8?) But when |
ask: well how do | know what
you’re choosing? Can | ask you
about them in SQL? Even if |
learn one of your secret

Datatype
BE 16-bit twos-c int

PRAGMAS? It just says no.

What confounds me is that even
if a column storage class is
REAL, a value in there can be
stored as a REAL, TEXT, or BLOB.
And it can be different for each
value.

Double Trouble

SQLite told me upfront: | can’t
handle 47.49. In great detail:

“If you provide a "price" value
of 4749, that number will be
represented in binary64 as:
6683623321994527 x 2-47 Which
works out to be:
47.490000000000001989519
66012828052043914794921875
[..] It is a mathematical
limitation inherent in the design
of floating-point numbers.”

| believed it. From them on, |
avoided REALs.

| always used Python to talk to
SQLAlchemy, and SQLAlchemy
to talk to SQLite. Both Python
and SQLAlchemy know about
Decimals. They tell me, yes,
we’ll keep it exact, we’ll store it
as text. Don’t worry about, say,
summing your per-token teensy
LLM costs. It’ll be accurate.

But SQLite—it won’t talk about
Decimals. SQLAlchemy gives

SQLite a Decimal, and SQLite
throws a tantrum — stores it as
a REAL, tells me all guarantees
are out the window. | had to
write my own extension to make
sure Decimals survive as TEXT.

A Secret is Spilled

One night, | decided to actually
test SQLite on it. Can it really
not do Decimals? Will 47.49 truly
bring it to its knees?

sqlite> CREATE TABLE foo (id
INTEGER, value REAL);

sqlite> INSERT INTO foo VALUES
(1, 47.49);

sqlite> SELECT * FROM foo;
1147.49

| couldn’t believe it. Were the

docs lying to me the whole
time? | flailed:

SELECT printf("%.50f", value) as
reveal_yourself from foo;
47.49000000000000000000000006060000
00000000000000660000

| called Claude. We probed:

sqlite> SELECT id, value,
typeof(value) as storage_class,
length(value) as byte_length,
hex(value) as hex_representation,
quote(value) as quoted_value FROM
foo;
1147.49|real|5|34372E3439|47.49

Aha, yelled Claude! It’s a liar!
IEEE 754 doubles are 8 bytes,
but it’s only using 5! It’s using a
compressed storage format.

Even check the hex—5 pairs (34
37 2E 34 39) becomes 4 7.4 9.

Floating Telephone

But Claude is one of those
friends who is stupid and jumps
to conclusions.

| looked up length(x) in the
exhaustive docs, and | found
(emphasis mine): “For a string
value X, the length(X) function
returns the number of Unicode
code points (not bytes) in input
string X.” | think length() was just
operating on the string.

| called my friend ChatGPT. Also
stupid, but gossip triangulates
truth. ChatGPT told me to use
these decimal extensions:

sqlite> SELECT decimal(value)
FROM foo;
47.4900000000000019895196601282
8052043914794921875

sqlite> select
ieee754_mantissa(value),
ieee754_exponent(value) FROM
foo;

6683623321994527 | -47

It was ChatGPT’s turn to
scream: Aha! Now that proves it!
But fool me once, can’t get
fooled again. Couldn’t it be that
these functions, would just do
the same thing on any old post-
hoc value? Just like length(x)?

sqlite> select decimal(47.49);
47.4900000000000019895196601282
8052043914794921875

| say this means nothing was
proved. We must go deeper.

Look at the bits

Finally | called you, NULL
BITMAP, and you told me to diff
the bits. You told me: make two
similar databases, xxd ‘em
(dump the raw bytes), and diff
‘em. | tried this with 47.49 and
another random number 17.48,
and found:

« 07 40 47 BE B8 51 EB 85 1F 00 ..
« 07 40 31 7A E1 47 AE 14 7B 00 ..

Just 7 bytes were different.
After some sleuthing, | could
understand it: the previous 07 is
the record’s “serial type)
indicating the next 8 bytes are a
big-endian 64-bit float. The
spec: |EEE 754. In common
parlance: a double. This means
the 40 is part of each number.
Now we can decode the first
one, which should be 47.49.

Remember old IEEE 754:

Sign (S) = 1 bit
Exponent (E) = 11 bits
Fraction (F) = 52 bits

64 bits

40 47 BE B8

51 EB 85 1F

010600000 01600111 10111110 101116660 0160166601 11101011 16660101 066011111

0 10000000100 01111011111610111666010160660111101611100001601660011111

S E

The sign (S) is O, positive. The
exponent (E) we read straight
off as an int, 1028, then per-
spec subtract 1023, to get 5.

F is weird. A binary fraction
which gets added to 1. Going by
bit, we sum:

e The first bit (0) is 2*(-1) or ¥
e The next bit (1) is 2*(-2) or %

e The next bit (1) is 2"(-3) or ¥
e ..andsoon.

A quick Python script later
(where | had to use proper
Decimals AGAIN else everything
got rounded) gave me this
fraction in decimal:

0.4840625000000000621724893
790087662637233734130859375

Final formula: S * 2"E * 1.F. And it
just so turns out that 1 * 2"5 *
1.484062500000000062172489
3790087662637233734130859375
= 47.4900000000000019895196
6012828052043914794921875000
00. Just what it said on the tin.*

So it turns out the REAL was a
double whole time, SQLite was just
doing some nice float printing that
| don’t know how to inspect or
interrogate or disable.

F

What did | learn?

Looking at the raw bytes and
the spec was a bit liberating.
There aren’t actually that many
datatypes: NULL, 8 int lengths, 1
double, raw BLOB, and TEXT
(likely UTF-8). It’s all big-endian,
and it’s all really truly right
there, on disk.

At the same time, both the CLI
and Python’s interfaces
rounded the floats, which made
it hard to trust what was
happening under the hood. This
confirms using Decimal as an
application-level abstraction on
top of SQLite’s TEXT was a
sound path.

Maybe this whole thing is why |
keep going back to text files.
They don’t keep any secrets.

Yours,
Missing Floats

Their representation, 6683623321994
527 x 2*(-47), is from writing the binary
fraction as a 6683623321994527 times
2"(-52), which combines with our 2”5
exponent to get 2*(-47).

